Volume 7, Issue 4, August 2018, Page: 175-182
Characteristics of Convective Storm Top Altitudes in Summer over the Tibetan Plateau by GPM
Cai Hongke, School of Atmospheric Sciences, Chengdu University of Information Technology, Plateau Atmospheric and Environment Laboratory of Sichuan Province, Chengdu, China
Sun Yi, School of Atmospheric Sciences, Chengdu University of Information Technology, Plateau Atmospheric and Environment Laboratory of Sichuan Province, Chengdu, China; Guizhou Meteorological Observatory, Guiyang, China
Chen Quanliang, School of Atmospheric Sciences, Chengdu University of Information Technology, Plateau Atmospheric and Environment Laboratory of Sichuan Province, Chengdu, China
Received: Jul. 19, 2018;       Accepted: Aug. 3, 2018;       Published: Aug. 29, 2018
DOI: 10.11648/j.earth.20180704.15      View  275      Downloads  25
Abstract
To have a clear understanding of the convective precipitation over the Tibetan Plateau (TP) and its surrounding regions, this research systematically studied characteristics of distribution of convective storm top altitudes over the Tibetan Plateau and its surrounding regions by using the level-2 orbital data obtained by the Global Precipitation Mission (GPM) Dual-frequency Precipitation Radar (DPR). The following conclusions are drawn in this study. (1) Because of the development of Asia summer monsoon, the number of samples of precipitation with storm top altitude above 10 km increases gradually from June to August, and all the samples of precipitation diminishes with the increases of altitude. That is, the higher the storm top altitude, the less the frequency of precipitation. (2) The deep convection frequency above 10 km altitude over the Tibetan Plateau and its surrounding regions is less than 0.8%. The deep convection frequency above 14 km is obviously less than the 10 km deep convection, not exceeding 0.2%. (3) With the increase of convective storm top altitude, the proportion of corresponding deep convection decreases exponentially. The contribution of convective precipitation to total precipitation is consistent with the contribution of convective precipitation frequency to total precipitation frequency, and the both area fractions of them decrease rapidly with the increases of the contribution. Besides, both of the two maximum contributions are below 40%. (4) The storm top altitude and surface rain rate of convective precipitation are the lowest in June and the highest in August. Furthermore, the storm top altitude over the TP rises slowly from the western part of the plateau to the eastern part, and the rain rate shows a significant gradient change with the increases of height. Below 6 km altitude, the maximum value of rain rate can reach 8 mm/h, but the precipitation intensity reduce to 4 mm/h when the altitude is above 6 km.
Keywords
GPM DPR, Tibetan Plateau, Convective Precipitation, Storm Top Altitude
To cite this article
Cai Hongke, Sun Yi, Chen Quanliang, Characteristics of Convective Storm Top Altitudes in Summer over the Tibetan Plateau by GPM, Earth Sciences. Vol. 7, No. 4, 2018, pp. 175-182. doi: 10.11648/j.earth.20180704.15
Copyright
Copyright © 2018 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
Houze Jr., R. A., Schmid, W., Fovell, R. G., Schiesser, H. H., Hailstorms in Switzerland:left movers, right movers, and false hooks[J]. Mon. Weather Rev. 1993. 121, 3345–3370.
[2]
Guo R, Liu Y, Zhou H, et al. Precipitation downscaling using a probability-matching approach and geostationary infrared data: An evaluation over six climate regions [J]. Hydrology & Earth System Sciences Discussions, 2017:1-26.
[3]
Arkin, P. A., Ardanuy, P. E. Estimating climatic-scale precipitation from space: A review[J]. J. Clim. 1989, 2, 1229–1238.
[4]
Sun Y, Chen Q. Variation of Atmospheric Composition in UTLS during a Strong Convection Process in Tibetan Plateau [J]. Meteorological Science & Technology, 2017.
[5]
Sherwood, S. C.; Dessler, A. E. On the control of stratospheric humidity[J]. Geophys. Res. Lett. 2000, 27, 2513-2516.
[6]
Li, Q. B.; Jacob, D. J.; Logan, J. A.; Bey, I.; Yantosca, R. M.; Liu, H. Y.; Martin, R. V.; Fiore, A. M.; Field, B. D.; Duncan, B. N.; Thouret, V. Tropospheric Ozone Maximum over the Middle East[J]. Geophys. Res. Lett. 2001, 28, 3235-3238.
[7]
Kar, J.; Bremer, H.; Drummond, J. R. Rochon, Y. J.; Jones, D. B.; Nichitu, F.; Zou, J.; Liu, J.; Gille, J. C.; Edwards, D. P.; Deeter, M. N.; Francis, G.; Ziskin, D.; Warner, J. Evidence of vertical transport of Carbon Monoxide from Measurements of Pollution in the Troposphere (MOPITT) [J]. Geophys. Res. Lett. 2004, 31.
[8]
Gettleman, A.; Kinnison, D. E. Dunkerton, T. J.; Brasseur, G. P. Impact of Monsoon Circulations on the Upper Troposphere and Lower Stratosphere[J]. J. Geophys. Res. Atmos.2004, 109(D22).
[9]
Forster, P. M. D. F., Shine, K. P. Stratospheric water vapor changes as a possible contributor to observed stratospheric cooling[J]. Geophys. Res. Lett. 1999, 26, 3309-3312.
[10]
Yang Yuanjian, Yunfei Fu, Fang Qin. Radiative Forcing of the Tropical Thick Anvils Evaluated by Combining TRMM with Atmospheric Radiative Transfer Model,Atmos. Sci. Letter. 2017. 18(5):222-229.
[11]
Murakami, M. Analysis of the deep convective activity over the western Pacific and Southeast Asia. Part I: Diurnal variation[J]. J. Meteorol. Soc. Jpn. 1983, 61, 60–76.
[12]
Uyeda, H.; Yamada, H.; Horikomi, J.; Shirooka, R.; Shimizu, S.; Liu, L.; Ueno, K.; Fujii, H.; Koike, T. Characteristics of convective clouds observed by a Doppler radar at Naqu on Tibetan Plateau during theGAME-Tibet IOP[J]. J. Meteorol. Soc. Jpn. 2001, 79, 463–474.
[13]
Fujinami, H.; Yasunari, T. The seasonal and intraseasonal variability of diurnal cloud activity over theTibetan Plateau[J]. J. Meteorol. Soc. Jpn. 2001, 79, 1207–1227.
[14]
Long, Q. C.; Chen, Q. L.; Gui, K.; Zhang, Y. A Case Study of a Heavy Rain over the Southeastern Tibetan Plateau[J]. Atmos. 2016, 7, 118.
[15]
Zhong L, Chen L, Yang R, et al. Variability in the vertical structure of precipitation in Sichuan and Chongqing based on 2004-2014 space-borne observations[J]. Acta Meteorologica Sinica, 2018.
[16]
Hou, A. Y.; Kakar, R. K.; Neeck, S.; Azarbarzin, A. A.; Kunmmerow, C. D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The global precipitation measurement mission[J]. B. Am. Meteorol. Soc. 2014, 95, 701-722.
[17]
Nesbitt, S. W.; Zipser, E. J.; Cecil, D. J. A census of precipitation features in the tropics using TRMM: Radar, ice scattering, and lightning observations [J]. J. Clim. 2000, 13, 4087-4106.
[18]
Liu, G.; Fu Y. The characteristics of tropical precipitation profiles as inferred from satellite radar measurements[J]. J. Meteorol. Soc. Jpn. 2001, 79, 131-143.
[19]
Fu, Y.; Liu, Y.; Liu, G.; Wang, Q. Seasonal characteristics of precipitation in 1998 over East Asia as derived from TRMM PR[J]. Adv. Atmos. Sci. 2003, 20, 511-529.
[20]
Yu, R.; Yuan, W.; Li, J. Fu, Y. Diurnal phase of late-night against late-afternoon of stratiform and convective precipitation in summer southern contiguous China[J]. Clim. Dyn. 2010, 35, 567-576.
[21]
Liu, P.; Wang, Y.; Feng, S.; Li, C. Y.; Fu, Y. F. Climatological characteristics of overshooting convective precipitation in summer and winter over the tropical and subtropical regions[J]. Chin. J. Atmos. Sci. 2012, 36, 579-589.
[22]
Liu, P.; Li, C. Y.; Wang, Y.; Fu, Y. F. Climatic characteristics of convective and stratiform precipitation over the tropical and subtropical areas as derived from TRMM PR[J]. Sci China Earth Sci. 2012, 42, 1358-1369.
[23]
Fujinami, H.; Nomura, S.; Yasunari, T. Characteristics of diurnal variations in convection and precipitation over the southern Tibetan Plateau during summer[J]. Sola. 2005, 1, 49–52.
[24]
Fu, Y.; Liu, G.; Wu, G.; Yu, R.; Xu, Y.; Wang, Y.; Li, R.; Liu, Q. Tower mast of precipitation over the central Tibetan Plateau summer[J]. Geophys. Res. Lett. 2006, 33, 157–158.
[25]
Yang Yuan-Jian, Da-ren Lu, Yun-Fei Fu, et al., 2015. Spectral Characteristics of Tropical Anvils Obtained by Combining TRMM Precipitation Radar with Visible and Infrared Scanner Data, Pure and Applied Geophysics., 172, (6), 1717-1733 DOI:10.1007/s00024-014-0965-x.
[26]
Wang, C.; Shi, H.; Hu, H.; Wang, Y.; Xi, B. Properties of cloud and precipitation over the Tibetan Plateau[J]. Adv. Atmos. Sci. 2015, 32, 1504–1516.
[27]
Hamada, A.; Takayabu, Y. N. Improvements in detection of light precipitation with the Global Precipitation measurement dual-frequency precipitation radar (GPM DPR) [J]. J. Atmos. Ocean. Tech. 2016, 33, 653-667.
[28]
Beauchamp, R. M.; Chandrasekar, V.; Chen, H.; Vega, M. Overview of the D3R observations during the IFloodS field experiment with emphasis on rainfall mapping and microphysics[J]. J. Hydrometeorology. 2015, 16, 2118-2132.
[29]
Skofronick-Jackson, G.; Hudak, D.; Petersen, W. et al. Global Precipitation Measurement Cold Season Precipitation Experiment (GCPEX): For Measurement’s sake, Let It Snow[J]. B. Am. Meteorol. Soc. 2015, 96, 1719-1741.
[30]
Chandrasekar, V.; Le, M. Evaluation of profile classification module of GPM-DPR algorithm after launch//Geoscience and Remote Sensing Symposium (IGARSS) [J], IEEE International. IEEE, 2015, 5174-5177.
[31]
Toyoshima, K.; Masunaga, H.; Furuzawa, F. A. Early evaluation of Ku-and Ka-band sensitivities for the Global Precipitation Measurement (GPM) Dual-Frequency Precipitation Radar (DPR) [J]. SOLA. 2015, 11, 14-17.
[32]
Tange, G.; Ma. Y.; Long. D.; Zhong, L.; Hong, L. Evaluation of GPM Day-1 IMERG and TMPA Version-7 legacy products over Mainland China at multiple spatiotemporal scales[J]. J. Hydrometeorology. 2016, 533, 152-167.
[33]
Liu, P.; Fu, Y. Climatic characteristics of summer convective and stratiform precipitation in southern China based on measurments by TRMM precipitation radar[J]. Chin. J. Atmos. Sci. 2010, 34, 802-814.
[34]
Fujiyoshi, Y.; Takasugi, T.; Gocho, Y.; Takeda, T. Radar-Echo Structure of Middle-Level Precipitating Clouds and the Charge of Raindrops[J]. J. Meteorol. Soc. Jpn. 1980, 58, 203-216.
[35]
Hobbs, P. V. Research on clouds and precipitation: Past, present, and future[J]. I. B. Am. Meteorol. Soc. 1989, 70, 282-285.
[36]
Zipser, E. J.; Lutz, K. R. The vertical profile of radar reflectivity of convective cells: A strong indicator of storm intensity and lightning probability? [J]. Mon. Weather Rev, 1994, 122, 1751-1759.
Browse journals by subject